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Abstract

Host adaptation is known to occur in Cryptosporidium parvum, with IIa and IId subtype families 

preferentially infecting calves and lambs, respectively. To improve our understanding of the 

genetic basis of host adaptation in Cryptosporidium parvum, we sequenced the genomes of two IId 

specimens and one IIa specimen from China and Egypt using the Illumina technique and 

compared them with the published IIa IOWA genome. Sequence data were obtained for >99.3% of 

the expected genome. Comparative genomic analysis identified differences in numbers of three 

subtelomeric gene families between sequenced genomes and the reference genome, including 

those encoding SKSR secretory proteins, the MEDLE family of secretory proteins, and insulinase-

like proteases. These gene gains and losses compared with the reference genome were confirmed 

by PCR analysis. Altogether, 5,191–5,766 single nucleotide variants were seen between genomes 

sequenced in this study and the reference genome, with most SNVs occurring in subtelomeric 

regions of chromosomes 1, 4, and 6. The most highly polymorphic genes between IIa and IId 

encode mainly invasion-associated and immunodominant mucin proteins, and other families of 

secretory proteins. Further studies are needed to verify the biological significance of these 

genomic differences.

☆Note: Nucleotide sequence data reported in this paper, including all Sequence Read Achieve (SRA) data and assembled contigs, are 
available in GenBank under the BioProject accession number PRJNA320419 and BioSample accession numbers SAMN04938568, 
SAMN04938569 and SAMN04938570.
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1. Introduction

Cryptosporidium parvum is the Cryptosporidium sp. responsible for watery diarrhoea in pre-

weaned ruminants (Santin, 2013). It is also the most important zoonotic Cryptosporidium sp. 

in humans (Ryan et al., 2014). Previous sequence characterizations of the 60 kDa 

glycoprotein (gp60) gene had shown the existence of host adaption in C. parvum, with the 

occurrence of the IIa subtype family mostly in cattle, IIc subtype family mostly in humans, 

and IId subtype family mostly in sheep and goats, although all three subtype families are 

human pathogens and IId subtypes have been found in calves in some areas (Xiao, 2010). 

More recent sequence characterizations at other genetic loci have confirmed the existence of 

host adapted C. parvum subtype families (Widmer and Lee, 2010).

The genetic basis for host adaptation in C. parvum is not clear. The genome of one C. 
parvum IIa isolate (IOWA) from a calf in the United States, propagated through calf 

passages, was among the first two Cryptosporidium isolates sequenced (Abrahamsen et al., 

2004). More recently, the genome of one IIc isolate from a child in Uganda and propagated 

in immunosuppressed mice was sequenced (Widmer et al., 2012). Due to the existence of 

significant sequence differences between the two isolates across the entire genomes, more 

comparative genomic analysis of other host-adapted C. parvum subtypes, especially 

different subtypes from the same area, is needed in order to better understand the genetic 

determinants for host adaptation in C. parvum.

In this study, we sequenced the genomes of two IId specimens of C. parvum from China and 

Egypt. As a control, we also sequenced the genome of one IIa specimen. The comparative 

genomic analysis revealed some differences in the number of several subtelomeric gene 

families between specimens sequenced in this study and the reference C. parvum IOWA, and 

in the sequences of the invasion-associated and immunodominant mucin-type secretory 

glycoproteins between IIa and IId subtype families.

2. Materials and methods

2.1. Cryptosporidium specimens

The genomes of three C. parvum specimens were sequenced in the study: specimen 31727 

of the IIdA19G1 subtype, 34902 of the IIdA20G1 subtype, and 35090 of the IIaA15G1R1 

subtype. Specimen 31727 was collected from a 1 month old dairy calf with diarrhoea in 

Zhengzhou, Henan Province, China in November 2008 and maintained through animal 

passages in gerbils. Specimen 34902 was collected in January 2011 from a 3 week old 

buffalo calf with diarrhoea in Sakha, Kafr El Sheikh Province, Egypt. Specimen 35090 was 

collected in October 2011 from a 5 week old dairy calf with diarrhoea in Al Nubaria, El 

Beheira Province, Egypt. The two IId subtypes from China and Egypt were targeted for 

sequencing in this project because they are commonly found in calves in both countries. The 
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three subtypes chosen in this study represented the most common C. parvum subtypes in 

calves and humans in China and Egypt. For each specimen, faecal material was stored in 

2.5% potassium dichromate at 4 °C for less than 6 months before use in Cryptosporidium 
oocyst isolation. Cryptosporidium species and subtypes were determined by PCR-RFLP 

analysis of the ssrRNA and sequence analysis of the gp60 genes, respectively (Xiao et al., 

2009). The collection of faecal specimens used in the study was approved by the 

Institutional Committee of the Post-graduate Studies and Research at Kafr El Sheikh 

University, Egypt, and the Research Ethics Committee of Henan Agricultural University, 

Zhengzhou, China.

2.2. Oocyst isolation and whole genome sequencing

Cryptosporidium oocysts were isolated from stool specimens by sucrose and cesium 

chloride gradient centrifugation, and immunomagnetic separation as previously described 

(Guo et al., 2015a). They were subjected to treatment with 10% commercial bleach on ice 

for 10 min and five freezing-and-thawing cycles. DNA was extracted using the Qiagen 

DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA, USA), and amplified using the REPLI-g 

Midi Kit (Qiagen). The amplified DNA was sequenced on an Illumina Genome Analyzer IIx 

(Illumina, San Diego, CA, USA). For specimen 31727, a 100 bp paired-end technique was 

used whereas for specimens 34902 and 35090, a 100 bp single-end technique was used. The 

sequence reads were analysed for sequencing quality using CLC Genomic Workbench 8.5 

(https://www.qiagenbioinformatics.com/products/clc-genomics-workbench). They were 

trimmed off by 10 nucleotides at the 5′ end and Phred score < 25 at both ends, using the 

error rate limit setting of 0.02, minimum read length of 65 nucleotides, and ambiguous trim 

setting of 2. Trimmed reads were assembled de novo using CLC Genomics Workbench with 

word size 50, bubble size of 400, mismatch cost of 2, insertion and deletion costs of 3, 

minimum contig length of 500 bp, and updating contigs after read mapping. The word size 

50 was selected based on the outcome of de novo assemblies of several Cryptosporidium 
genomes using word sizes of 22 (default), 30, 40, 50 and 60, and assessment of assemblies 

using QUAST (http://bioinf.spbau.ru/quast). Raw sequence reads were also trimmed using 

BBDuk from the BBMap package (https://sourceforge.net/ projects/bbmap/). Reads were 

trimmed at both ends for Phred score < 30, phix adapters from BBMap package resources, 

and 10 bp from the 5′ end with paired-end reads trimmed to equal length and reads shorter 

than 65 bp removed. Sequence reads were analysed for sequence quality before and after the 

cleaning using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

Trimmed sequence reads were also de novo assembled using SPAdes (http://cab.spbu.ru/

software/spades/), with word sizes 31, 41, 51 and 61.

2.3. Genome comparison and identification of gene insertions and deletions (indels)

For assessment of gene gains and losses among C. parvum isolates, contigs from each 

genome assembly were aligned with the eight assembled chromosome sequences of the C. 
parvum IOWA isolate of the IIaA15G2R1 subtype (version AAEE00000000.1) by using the 

progressive alignment algorithm of Mauve 2.3.1 (http://asap.genetics.wisc.edu/software/

mauve/) with default options. This reference was also used in other analyses described 

below, and all analyses were conducted prior to the recent re-annotation of the IOWA 

genome, which increased the number of annotated genes from 3,805 to 3,865 (Isaza et al., 
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2015). Major insertions and deletions (indels) in genomic fragments were identified by 

manual inspection of the genome alignment. Potential genes in major insertions were 

identified using FGENESH (http://www.softberry.com/berry.phtml?

topic=fgenesh&group=programs&subgroup=gfind) or geneid (http://genome.crg.es/

software/geneid/geneid.html) webservers. The identities of the genes were established by 

blastp analysis of the deduced amino acid sequences against the National Center for 

Biotechnology Information (NCBI), USA, non-redundant protein sequence database. 

Contigs from contaminants were removed from the assembly through BLAST analysis 

against the NCBI non-redundant nucleotide database, which produced the final genome. 

Contigs obtained from the study were further aligned with the reference IOWA genome 

using NUCmer within the MUMmer 3.0 package (http://mummer.sourceforge.net/), with a 

minimum cluster length of 100 bp. Indels in the alignments were detected by using the 

MUMmer show-snps utility and in-house scripts.

2.4. Variant analysis and identification of highly polymorphic genes

To identify highly polymorphic genes, sequence reads of each genome were mapped to the 

reference C. parvum IOWA genome using CLC Genomics Workbench 8.5, with a mismatch 

cost of 2, insertion and deletion costs of 3, length fraction of 0.5 and similarity fraction of 

0.8. The outcome of the read mapping was analysed using the Basic Variant Detection tool 

in the software, with minimum coverage of 10, variant probability of 90, required variant 

count of 2. The outcome of the variant detection was exported into Excel and the number of 

single nucleotide variants (SNVs) present per 1,000 bp along the 9.1 Mb C. parvum genome 

was plotted by using the Pivot Table function of Excel. Due to the likely presence of 

mismapping of sequence reads to multicopy genes and sequence heterozygosity at some loci 

(especially cgd2_1370, cgd1_3290, cgd3_4230, cgd5_4510, cgd5_4520, cgd6-1000, 

cgd6_5510), only homozygous SNVs were considered in the identification of highly 

polymorphic genes. The number of SNVs present among genomes sequenced in this study 

was also compared using the same approach.

Alternatively, sequence reads were also mapped to the C. parvum IOWA genome using 

Burrows Wheeler Alignment (BWA) (https://www.msi.umn.edu/sw/bwa) with default 

parameters. All BAM files were passed to SAMtools mpileup (http://www.htslib.org/) with 

parameters -g for computing genotype likelihoods, -C50 to handle excessive read depth that 

could cause errors, -P for platform information, and -t to output read depth and allelic depth. 

The output was piped to BCFtools (http://www.htslib. org/download/) call algorithm to 

create a variant only VCF file. BCFtools filter was used to remove variants with a call 

quality of Phred score ≤20 and read depth ≤10. The SNVs identified were annotated and 

analysed using SnpEff (http://snpeff.sourceforge.net/) for variant type, function, and genes 

affected.

Nucleotide sequences from the highly polymorphic genes identified in the SNV analysis 

were concatenated together for each of the genomes under study. They were aligned using 

MAFFT 7.3 (http://mafft.cbrc.jp/alignment/software/) with default parameters and analysed 

with the neighbour-joining method implemented in MEGA6 (http://

www.megasoftware.net/), based on genetic distances calculated with the Kimura 2-

Feng et al. Page 4

Int J Parasitol. Author manuscript; available in PMC 2018 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind
http://www.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind
http://genome.crg.es/software/geneid/geneid.html
http://genome.crg.es/software/geneid/geneid.html
http://mummer.sourceforge.net/
https://www.msi.umn.edu/sw/bwa
http://www.htslib.org/
http://www.htslib
http://snpeff.sourceforge.net/
http://mafft.cbrc.jp/alignment/software/
http://www.megasoftware.net/
http://www.megasoftware.net/


parameter model and the inclusion of both transitions and transversions. The topology of the 

tree obtained was compared with the whole genome phylogeny based on SNV analysis. The 

latter was conducted using R package ‘APE’ (Analyses of Phylogenetics and Evolution) 

(https://cran.r-project.org/web/packages/ape/index.html). The two VCF files were merged 

and then transformed into a SNP matrix using VCFtools (http://vcftools.sourceforge.net/) 

and in house scripts. The matrix was imported into R where the distance and neighbour-

joining algorithms of APE were used to create the phylogenetic tree, with Cryptosporidium 
hominis isolate TU502 as the outgroup.

2.5. Confirmation of major indels by PCR

PCR was used to confirm the presence of major insertions at the 3′ end of chromosomes 3 

and 6. For confirmation of the 4,135–4,189 bp insertion in chromosome 3, a nested PCR was 

designed based on conserved sequences 245–327 bp upstream of the telomeric repeats in the 

reference IOWA genome and nucleotides 485–631 of the insertions in specimen 31727 

sequenced in this study. The primers used were IId-Indel-C3-F1 (5′-TCG AGT ATG GAT 

AGC TGT AGT TC-3′) and IId-Indel-C3-R1 (5′-CTA ACT TCA GAC AGG ATA GAC 

TCT-3′) in primary PCR, and IId-Indel-C3-F2 (5′-ATG TAA CCT TCT CGG AAT CCG 

TT-3′) and IId-Indel-C3-R2 (5′-CTG CAA GCA TAA GAA AAG ATA CCC AT-3′) in 

secondary PCR, which amplify a fragment of 952 and 781 bp in C. parvum specimens 

containing the insertion, respectively. For confirmation of the 5,273 bp insertion in 

chromosome 6, nested PCR primers were designed based on conserved nucleotide sequences 

flanking the insertion (nucleotides 555–640 of cgd6_5490 and nucleotides 826–885 of 

cgd6_5500). The primers used were IId-Indel-C6-F1 (5′-ACA CGA TCA AAT AGA TTC 

AGG TCG AA-3′) and IId-Indel-C6-R1 (5′-GAA GAG GCA ATG ATA ACC GGT-3′) in 

primary PCR, and IId-Indel-C6-F2 (5′-AAG TCA AGG CCA AGA GGT TCT G-3′) and 

IId-Indel-C6-R2 (5′-GTC TTT CTA GAT TGA GAG GAT TAA G-3′) in secondary PCR, 

which amplify a fragment of 820 and 736 bp in C. parvum specimens without the insertion, 

respectively. The long insertion in other C. parvum specimens would have prevented 

amplification of the PCR target.

Three specimens of IIa subtypes (IIaA15G2R1, IIaA15G2R2, and IIaA18G3R1) from the 

United States and three specimens of IId subtypes from other countries (IIdA16G1 from 

Greece, IIdA20G1 from Egypt, and IIdA21G1 from Spain) were used in PCR analysis of the 

two major indel targets. Each specimen was analysed in duplicate PCRs using 50 μl of PCR 

mixture which consisted of 1 × PCR buffer (Applied Biosystems, Foster City, CA, USA), 

200 μM dNTP, 3.0 mM MgCl2, 100 nM primers, 2.0 U of Taq polymerase (Promega, 

Madison, WI, USA), 400 ng/μL of non-acetylated BSA (Sigma-Aldrich, St. Louis, MO, 

USA), and 1 μL (~100 ng) of extracted DNA or 2 μL of primary PCR products (in secondary 

PCR). Both primary and secondary PCRs were performed in a GeneAmp 9700 (Applied 

Biosystems) for 35 cycles at 94 °C for 45 s, 55 °C for 45 s, and 72 °C for 60 s, with an initial 

denaturation (94 °C for 5 min) and a final extension (72 °C for 10 min). Positive PCR 

products were sequenced in both directions on an ABI3130 Genetic Analyzer (Applied 

Biosystems). Nucleotide sequences obtained were aligned with reference sequences of IIa 

and IId subtype families using ClustalX (http://www.clustal.org/).
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2.6. Data deposition

Nucleotide sequences generated from the project, including all Sequence Read Achieve 

(SRA) data and assembled contigs, were submitted to the NCBI under the BioProject 

accession number PRJNA320419 and BioSample accession numbers SAMN04938568, 

SAMN04938569 and SAMN04938570. Raw SNV data from genome comparisons are 

presented in Supplementary Tables S1–S3. Full lists of list of indels in each of the three C. 
parvum specimens compared with the IOWA reference genome are presented in 

Supplementary Tables S4–S6.

3. Results

3.1. Genomes of sequenced C. parvum specimens

Approximately13.07–18.91 million 100 bp sequence reads were obtained from each C. 
parvum specimen sequenced. After trimming for poor quality scores and nucleotide 

ambiguity, 12.40–17.73 million of 65–91 bp reads remained when CLC Genomics 

Workbench was used as the trimming tool. In contrast, 8.62–13.27 million of 65–91 bp reads 

remained when BBDuk was used in sequence read trimming (Table 1). Improvements in the 

quality of sequence reads were achieved after the trimming, as indicated by the distribution 

of average Phred scores, nucleotide contribution by read base position, and quality 

distribution by read base position, which are illustrated in Supplementary Figs. S1 and S2. 

They produced 116.0-, 168.7- and 131.9-fold coverage of the IOWA reference genome for 

specimens 31727, 34902 and 35090, respectively, in sequence read mapping with CLC 

Genomics Workbench, and 78.5-, 126.5-, and 107.9-fold coverage in read mapping with 

BWA (Table 1). De novo assembly of read data using CLC Genomics Workbench generated 

assemblies of 9.06, 9.12 and 9.15 Mb in 3,269, 337 and 1,103 contigs for specimens 35090, 

31727 and 34902, respectively (Table 1). Similar assemblies were obtained when SPAdes 

was used in the de novo assembly of genomes (assemblies of 9.23, 9.13, and 9.24 Mb in 

1,390, 421, and 989 contigs for specimens 35090, 31727, and 34902, respectively). After the 

removal of contigs from contaminants, sequence data were obtained for 9.04–9.15 Mb of the 

genome. The genome from specimen 31727, sequenced by a 100 bp paired-end technique, 

was less fragmented than the two genomes sequenced by a 100 bp single-end technique, as 

reflected by the N50 contig values and the total number of contigs obtained (Table 1).

3.2. Gene gains and losses between sequenced genome and reference genome

The comparative genomic analysis of assemblies generated in this study and the reference 

IOWA genome identified some minor differences in gene contents (Table 2). At the 3′ end 

of chromosome 3, IId specimen 31727 had a 4,135 bp insert that had up to 81% sequence 

identity to gene cgd3_10, a member of the Cryptosporidium (conserved sequence motif) 

SKSR gene family, with signal peptide and SK and SR repeats. Gene prediction analysis 

identified a gene that encoded a 289 amino acid peptide that had 63% sequence identity to 

the protein encoded by cgd3_10. Similarly, IId specimen 34902 had a 4,158 bp insert that 

had up to 83% sequence identity to cgd3_10, which encoded a 292 amino acid peptide that 

had 64% sequence identity to the protein encoded by cgd3_10 (Fig. 1). The amino acid 

sequences obtained differed from the cgd3_10 sequence mainly in the nature of a repeat 

sequence in the encoded proteins, with the PSD/PSH repeat in the protein encoded by the 
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insertion and PSQ/PLQ repeat in the protein encoded by cgd3_10. The IIa specimen 35090 

also appeared to have this insertion; the first 283 bp and another 2,368 bp fragment of the 

insertion were present in two contigs (contigs 2704 and 1254, respectively). In contrast, the 

reference IOWA genome does not have any of the sequences, and its chromosome 3 ends 

with telomeric repeats (Fig. 1).

Another major insertion of genomic fragments was seen at the 3′ end of chromosome 6 

(Table 2). Compared with the reference genome of the C. parvum IOWA isolate, the three C. 
parvum specimens sequenced in this study, including the IIa specimen 35090 from Egypt, 

had a 5,273 bp insertion after cgd6-5490. This insertion had up to 66–71% nucleotide 

sequence identity to cgd3_4260 or cgd3_4270 (two insulinase-like peptidase genes similar 

to cgd6_5510 and cgd6_5520 downstream from the insertion). Gene prediction using geneid 

identified coding areas for the four M16 domains in typical insulinase-like peptidases. 

Upstream from the insertion, the three C. parvum specimens had only one of the two genes 

(cgd6_5480 and cgd6_5490) encoding the (conserved sequence motif) MEDLE family of 

secretory proteins (Fig. 2).

The presence of these gene gains and losses was confirmed by de novo assembly of genomes 

using alternative bioinformatics software and read mapping of published transcriptomic data 

from the C. parvum IOWA isolate to assemblies generated in this study. The assemblies 

generated using SPAdes showed the same deletions and insertions of genes at the 3′ end of 

chromosomes 3 and 6. In addition, a full 4,189 bp insertion was present at the 3′ end of 

chromosomes 3 in the genome from specimen 35090, and encoded for a 295 amino acid 

peptide that had 64% sequence identity to the protein encoded by cgd3_10, with the same 

PSD/PSH repeat seen in IId specimens (data not shown).

When sequence reads from a transcriptomic study of the C. parvum IOWA isolate in HCT-8 

cultures (Isaza et al., 2015) were mapped to the assemblies of specimens 31727, 34902 and 

35090, none of the reads were mapped to the 4,135–4,189 bp insertion in chromosome 3 and 

5,273-bp insertion in chromosome 6 (Supplementary Fig. S3). In contrast, most other genes 

in the C. parvum IOWA genome were covered by these RNA sequencing reads, as reported 

previously (Isaza et al., 2015).

PCR analysis of sequences within the major indels further confirmed the differences in gene 

content between the reference IOWA genome and IId genomes. The three IId specimens 

analysed by PCR targeting the insertion at the 3′ end of chromosome 3 generated the 

expected product containing the partial insertion and upstream sequence. DNA sequence 

analysis produced one sequence identical to the target sequence from specimen 31727 and 

two sequences with two SNVs. In contrast, the three IIa specimens from the United States 

did not generate any product in PCR analysis of the 4,135–4,189 bp insertion (Fig. 3A). 

Similarly, PCR analysis of the sequence between cdg6_5490 and cgd6_5500 generated the 

expected PCR products for the three IIa specimens analysed. DNA sequence analysis of 

PCR products generated sequences identical to the target sequence from the three genomes 

from this study. Due to the presence of the 5,273-bp insertion between cdg6_5490 and 

cgd6_5500, the three IId specimens analysed did not generate any PCR product (Fig. 3B). 

We did not attempt to confirm the deletion of cgd6_5480 by PCR, as cgd6_5480 and 
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cgd6_5490 have very similar nucleotide sequences, which made the design of cgd6_5480-

specific primers difficult.

There are many other smaller indels between C. parvum specimens sequenced in this study 

and the C. parvum IOWA reference genome throughout the eight chromosomes (Table 3).

3.3. Genes highly polymorphic between IIa and IId subtype families of C. parvum

Comparative genomic analysis revealed the presence of 5,191, 5,386 and 5,766 SNVs 

between specimens 35090 (IIaA15G1R1 from Egypt), 31727 (IIdA19G1 from China), or 

34902 (IIdA20G1 from Egypt) and the reference IOWA genome, respectively, as indicated 

by sequence read mapping using BWA. Among them, 61.8–63.2% of the SNVs occurred in 

coding regions, although the latter accounted for 75.0% of the genome. Nearly 40% of the 

3,805 predicted genes were polymorphic between the reference IOWA isolate and specimens 

sequenced in this study. Among the 3,210–3,630 SNVs in genes, 53.0–54.3% of the SNVs 

were non-synonymous (Table 4). Almost 3,000 core SNVs (>50% SNVs) identified in this 

study were shared among the three C. parvum genomes sequenced in this study, indicating 

that they were divergent from the reference IOWA genome. A similar percentage of non-

synonymous SNVs and polymorphic genes were also shared by these C. parvum genomes 

(Supplementary Fig. S4). The highly divergent nature of the three sequenced C. parvum 
genomes obtained in this study was supported by phylogenetic analysis of the SNV data, in 

which they formed a cluster outside the IOWA genome (Fig. 4A).

Most of the SNVs detected in this study were in the subtelomeric regions of chromosomes 1, 

4 and 6, with the exception of genes cgd1_470 and cgd6_1080, as shown in SNV rates along 

each of the eight chromosomes (Fig. 5). Between IIa and IId genomes from Egypt, most of 

the polymorphic genes encoded mucin proteins or were members of multigene families such 

as cgd1_120 (secreted protein with cysteine cluster with paralogs), cgd1_470 (mucin 8), 

cgd6_10 (secreted protein CP56 commonly used in subtyping), cgd6_40 (mucin MSC6-7 

with paralogs, another common subtyping target), cgd6_1080 (mucin gp60, the most 

commonly used subtyping target), and cgd6_5490 (MEDLE secreted protein with paralogs) 

(Fig. 6A). A similar distribution of SNVs was present between the IIa genome from Egypt 

and IId genome from China, with cgd6_4570 also being highly polymorphic (Fig. 6B). In 

contrast, the genomes of the two IId specimens in this study differed mostly in cgd6_4570 

and cgd6_5490 (Fig. 6C). Read mapping using BWA and SNV analyses using open source 

software generated the same pattern in the distribution of SNVs and identification of highly 

polymorphic genes (Supplementary Fig. S5). A phylogenetic tree constructed using 

concatenated sequences from these highly polymorphic genes showed a robust separation of 

IIa sequences and IId sequences (Fig. 4B).

4. Discussion

In this study, we sequenced the genomes of two IId specimens of C. parvum from China and 

Egypt. Sequence data were obtained for >99% of the expected genome. As expected, the de 

novo genome assembly obtained from paired-end sequencing was better than that from 

single-end sequencing. To assess the impact of geographic segregation on genetic 

differences between IIa and IId subtype families, we have also sequenced a IIa specimen 

Feng et al. Page 8

Int J Parasitol. Author manuscript; available in PMC 2018 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from Egypt, as IIa subtypes are rarely seen in China (Wang et al., 2014). As expected, 

significant genomic differences exist between genomes sequenced in this study and the 

reference IOWA genome. There were also numerous SNVs between IIa and IId subtype 

families across eight chromosomes. The highest number of SNVs observed between IIa and 

IId genomes, however, is approximately half of the SNVs observed previously between IIa 

and IIc genomes (Widmer et al., 2012). In the present studies, C. parvum genomes were 

sequenced after DNA was amplified using the REPLI-g Midi Kit. Previously, it was shown 

that C. parvum single cell genomes amplified using a REPLI-g Mini/Midi Kit showed no 

consistent biases in amplification of particular genomic regions and had 13–51 SNVs 

compared with the metagenome sequenced without whole genome amplification, with the 

majority of the SNVs belonging to the C > T and G > A transition (Troell et al., 2016). This 

amount to less than 1% of the magnitude of differences between the genomes sequenced in 

the present study and the reference IOWA genome, and thus should not affect significantly 

the outcome of comparative genomic analysis (Table 4).

Some differences were observed in the numbers of several genes that encode proteins 

thought to be involved in invasion. The specimens sequenced in this study have one more 

SKSR and insulinase genes and one less MEDLE gene than the reference IIa IOWA genome. 

Previously, C. parvum and C. hominis were shown to have different numbers of genes for 

these multigene families (Guo et al., 2015b; Isaza et al., 2015). As shown previously (Guo et 

al., 2015b; Isaza et al., 2015), none of the gene deletions occurred in the 10 sequence gaps 

present in the reference IOWA genome. Subtelomeric gene duplication or deletion of these 

genes was suggested to be involved in differences in host specificity between the two 

genetically related Cryptosporidium spp. (Guo et al., 2015b). Although the function of 

SKSR proteins is unknown, the reference C. parvum genome has eight such genes, and the 

only C. hominis-specific gene identified thus far, Chro.50011, also has SR repeats at its C 

terminus. Interestingly, a paralog of Chro.50011, Chro.50010, also has SR repeats at the C 

terminus. Thus, both Chro.50011 and Chro.50010 are probably members of the SKSR gene 

family. In C. hominis, Chro50011 is the last gene in chromosome 3 whereas Chro.50010 is 

the second-to-last gene in chromosome 5. The latter also has some sequence similarity to 

cgd2_4380, which is the last gene in chromosome 2 of C. parvum and was identified 

initially as a C. parvum-specific gene (Cops-1), but is known to have an orthologue in some 

C. hominis specimens (Bouzid et al., 2013). In C. parvum, an abridged, unannotated 

orthologue of Chro.50010 exists near the end of chromosome 5. Therefore, all genes 

involved in gene duplications and deletions among Cryptosporidium spp. are located in 

subtelomeric regions and are members of multigene families.

The biological significance of the gene gains and losses cannot be fully addressed in this 

study due to the nature of the specimens used. In this comparative study, the specimens 

analysed were all from calves and the gains and losses in three gene families were observed 

in both IIa and IId subtypes. However, results of PCR analysis of three C. parvum IIa 

specimens from the United Sates, where IId subtypes have not been reported, indicate the 

absence of the major insertions at the 3′ end of chromosomes 3 and 6. Indeed comparative 

genomic analysis of 30 additional C. parvum specimens has confirmed the absence of the 

two major insertions in IIa subtypes in the United States (unpublished data). Thus, there 

could be geographic differences in gene contents among C. parvum IIa isolates. In some 
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areas such as Spain, Greece and Australia, IId subtypes are commonly found in lambs and 

goats whereas IIa subtypes are found in calves (Quilez et al., 2008a, b; Tzanidakis et al., 

2014; Yang et al., 2014). IIa subtypes, however, have been seen in lambs in some countries 

including Spain (Geurden et al., 2008; Caccio et al., 2013; Connelly et al., 2013; Imre et al., 

2013; Diaz et al., 2015), and in some areas such as China, Egypt and Sweden, calves are 

commonly infected with IId subtypes (Amer et al., 2013a, b; Silverlas et al., 2013; Wang et 

al., 2014). Therefore, direct comparative genomic analysis of IIa and IId specimens from 

areas known to have distinct distribution of the two subtype families between calves and 

lambs is needed to infer the role of subtelomeric gene duplications in host adaptation by C. 
parvum subtype families.

The sequence differences between IIa and IId genomes involve mostly genes encoding 

mucin proteins such as cgd1_470 (encoding mucin 8), cgd6_40 (encoding MSC6-7), and 

cgd6_1080 (encoding gp60). As mucin proteins in Cryptosporidium spp. are best known for 

their roles in sporozoite invasion (O’Connor et al., 2009; Chatterjee et al., 2010; Ludington 

and Ward, 2016), the sequence polymorphism could contribute to the biological differences 

between IIa and IId subtype families of C. parvum. Mucins such as gp60 are also highly 

immunogenic, and thus are often immunodominant antigens. As such, genes encoding these 

proteins are naturally highly polymorphic (Strong et al., 2000; O’Connor et al., 2009). 

Nevertheless, only some of the mucin genes are divergent between IIa and IId C. parvum, as 

none of the seven mucin genes clustered in chromosome 2 have shown significant sequence 

differences.

Other highly polymorphic genes between the two subtype families include cgd1_120 

(encoding a secretory protein with cysteine cluster), cgd6_10 (encoding the well-known 

secretory protein CP56), and cgd6_5490 (encoding a MEDLE secretory protein). These are 

also mostly multicopy genes in subtelomeric regions and encode secretory proteins. Higher 

sequence differences in genes encoding secretory proteins were previously observed 

between IIa and IIc subtype families of C. parvum (Widmer et al., 2012). The identity of 

genes with high sequence polymorphism, however, differed between the two studies. The 

earlier study identified high sequence divergence in genes encoding ABC transporters 

between IIa and IIc subtype families, whereas we have identified high sequence divergence 

in mucin protein genes. Further studies using comparative genomic analysis of more isolates 

with diverse phenotypic characteristics (including IIc isolates) and genetic aberrations are 

needed to examine the role of these proteins in host adaptation by C. parvum.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Insertion of one Cryptosporidium-specific (conserved sequence motif) SKSR gene at the 3′ 
end of chromosome 3 in genomes of Cryptosporidium parvum sequenced in this study. 

Compared with the published IIa reference IOWA isolate, IId specimens from China (31727) 

and Egypt (34902) had a 4,135 bp and 4,158 bp insertion at the 30 end of chromosome 3, 

which encodes a 289 and 292 amino acid (aa) peptide with up to 63% and 64% sequence 

identity to the Cryptosporidium-specific SKSR gene cgd3_10, respectively. IIa specimen 

35090 appears to have the same insertion in this region. The vertical red (black) line in the 

IOWA reference isolate represents the border of the 3′ end of chromosome 3 and the 5′ end 

of chromosome 4, while the vertical black box (to the left) indicates the same sequence 

location in genomes under comparison. The coding regions of two genes at the 5′ end of 

chromosome 4, cgd4_10 and cgd4_20, are shown as horizontal bars. The sequence 

insertions in chromosome 3 are shown in red (grey), chromosome 3 sequences upstream 

from the insertion are shown in green (black) on the left, and chromosome 4 sequences are 

shown in blue (black) on the right. In the reference IOWA genome, the chromosomes 3 and 

4 have numerous copies of the telomeric repeat sequences (TTTAGG at the 3′ end of 

chromosome 3 and CCTAAA at the 5′ end of chromosome 4), which are shown in white. 

Sizes of the full insertion in the 31727 and 34902 genomes are specified. Only the first 283 

bp of the insertion is shown for the 35090 genome, but another 2,368 bp fragment of the 

insertion is present at the end of the genome sequence alignment. White peaks within each 

block are sequence divergence between the reference (IOWA) genome and genomes 

obtained in this study, while black peaks within the insertions are sequence differences 
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among the latter. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 2. 
Deletion of one gene encoding the (conserved sequence motif) MEDLE family of secretory 

protein and insertion of one gene encoding the insulinase-like peptidase at the 3′ end of 

chromosome 6 in genomes of Cryptosporidium parvum sequenced in this study. Compared 

with the IIa reference IOWA gene, the three C. parvum specimens sequenced, including the 

IIa specimen from Egypt (35090) and IId specimens from and Egypt (34902) and China 

(31727), have a 5,273 bp insertion (shown in red (grey)) after gene cgd6-5490. The insertion 

has up to 66–71% nucleotide sequence identity to cgd3_4260 or cgd3_4270 (genes encoding 

insulinase-like peptidases similar to cgd6_5510 and cgd6_5520 downstream from the 

insertion). Upstream from the insertion, the reference IOWA genome has two genes 

encoding the MEDLE family of secreted proteins (cgd6_5480 and cgd6_5490), whereas 

genomes sequenced in this study have only one such gene (cgd6_5490) in this region 

(sequences shown in white blocks are not present in genomes sequenced in this study, 

including cgd6_5480 in the first white block in the IOWA reference isolate). Within the 

panels, the single vertical red (black) line represents the border of two contigs in the genome 

assembly, while the vertical black box indicates the relative location of the cgd6_5500 gene. 

White peaks within each block are sequence divergence between the reference (IOWA) 

genome and genomes obtained in this study. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Confirmation of major insertions at the 3′ end of chromosomes 3 and 6 in Cryptosporidium 
parvum IId genomes by PCR. (A) Confirmation of the 4,135–4,189 bp insertion in 

chromosome 3 by PCR targeting on conserved sequences upstream of the telomeric repeats 

in the reference IOWA genome and 5′ end of the insertion in three genomes obtained from 

this study. Among the IIa and IId specimens analysed, only three IId specimens from Egypt, 

Spain and Greece produced the expected 781 bp PCR product. (B) Confirmation of the 

5,273 bp insertion in chromosome 6 by PCR targeting conserved nucleotide sequences 

flanking the insertion (3′ end of cgd6_5490 and 5′ end of cgd6_5500). Among the IIa and 

IId specimens analysed, only three IIa specimens from the United States produced the 

expected 781 bp PCR product, as the large insertion in IId genomes between cgd6_5490 and 

cgd6_5500 had prevented the amplification of the target sequence. M, size marker in 100 bp; 

lane 1, IIaA15G2R2 from USA; lane 2, IIaA15G2R1 from USA; lane 3, IIaA18G3R1 from 

USA; lane 4, IIdA20G1 from Egypt; lane 5, IIdA21G1 from Spain; lane 6, IIdA16G1 from 

Greece; lane 7, negative control and primary PCR; and lane 8, negative control for 

secondary PCR.
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Fig. 4. 
Phylogenetic relationship of Cryptosporidium parvum genomes characterised in this study 

as indicated by neighbour-joining analysis of whole genome single nucleotide variant data 

(A) and concatenated sequences (B) of 11 highly polymorphic genes (cgd1_120, cgd1_470, 

cgd4_10, cgd4_20, cgd4_30, cgd6_40, cgd6_1080, cgd6_5460, cgd6_5470, cgd6_5490, and 

cgd6_5500). In the former, genetic distances were computed using R package ‘APE’ and are 

in the number of single nucleotide variants, whereas in the latter, they were computed using 

the Kimura 2-parameter model and are in the units of the number of nucleotide substitutions 

per site. Numbers of single nucleotide variants and percentages of bootstrapping (1000 

replicates) are shown on branches in A and B, respectively. Both trees are outgrouped with 

sequences from the Cryptosporidium hominis TU502 isolate.
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Fig. 5. 
Distribution of single nucleotide variants in Cryptosporidium parvum genomes sequenced in 

this study in comparison with the published reference IOWA genome. To detect single 

nucleotide variants, sequence reads from each specimen were mapped to the 9.1 Mb 

reference IOWA genome and single nucleotide variants present were detected using the 

Basic Variant Detection tool in CLC Genomic Workbench 8.5. The Y-axis values are 

numbers of single nucleotide variants per 1,000 nucleotides and X-axis values are nucleotide 

positions of the single nucleotide variant peaks across the eight linked chromosomes 

(chrom). The X-axis labels for (A–C) are not drawn at the same scale, resulting in a slight 

shift of single nucleotide variant peaks. Highly polymorphic genes (single nucleotide 

variants values >20/1,000 nucleotides) are labelled in (A) 31727: IId specimen from China; 

(B) 34902: IId specimen from Egypt; (C) 35090: IIa specimen from Egypt. Genes only 

highly polymorphic between IId and the reference IOWA genomes are labelled with an 

asterisk.
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Fig. 6. 
Distribution of single nucleotide variants among Cryptosporidium parvum genomes 

sequenced in this study. To detect single nucleotide variants, sequence reads from one 

specimen were mapped to the assembled genome of another specimen and single nucleotide 

variants present were detected using the Basic Variant Detection tool in CLC Genomic 

Workbench 8.5. The Y-axis values are numbers of single nucleotide variants per 1,000 

nucleotides and X-axis values are nucleotide positions of the single nucleotide variant peaks 

across the eight linked chromosomes. Highly polymorphic genes (single nucleotide variants 

values > 20/1,000 nucleotides) are labelled. (A) 34902, IId specimen from Egypt versus 

35090, IIa specimen from Egypt; (B) 31727, IId specimen from China versus 35090; (C) 

34902 versus 31727.
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Table 1

Summary of Cryptosporidium parvum genomes sequenced in this study.

Specimen ID 31727 34902 35090

Subtype IIdA19G1 IIdA20G1 IIaA15G1R1

Host Dairy cattle Buffalo Dairy cattle

Source location Henan, China Kafr El Sheikh, Egypt El Beheira, Egypt

Sequencing techniquea 100 bp PE 100 bp SE 100 bp SE

Total sequencing reads 13,074,496 18,907,631 14,188,762

Reads after cleaning 12,401,023/8,672,250 17,733,415/13,422,516 13,603,027/11,264,070

Reads mapped 11,802,700/8,619,306 17,450,035/13,270,834 13,574,206/11,233,559

Average coverage (fold) b 116.0/78.5 168.7/126.5 131.9/107.9

Total length of assembly (bp) b 9,119,494/9,131,157 9,146,840/9,237,554 9,062,877/9,229,217

N50 (bp) b 76,396/127,633 21,594/42,637 4,248/29,222

Maximum contig size (bp) b 232,359/429,383 85,438/170,615 48,893/116,545

No. of contigs b 337/421 1,103/989 3,269/1,390

Size of draft genome (bp) b 9,082,089/9,080,318 9,111,587/9,136,723 9,040,186/9,147,844

No. of contigs in draft genome b 309/242 1,076/567 3,256/841

N50, the number of contigs (sorted by length from longest to shortest) whose length when summed covers 50% or more of the genome assembly.

a
Sequencing technique used as either paired-end sequencing (PE) or single-end sequencing (SE).

b
Statistics from CLC Genomics Workbench (read mapping and de novo assembly)/BWA (Burrows Wheeler Alignment; read mapping) or SPAdes 

(de novo assembly).
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Table 2

Gains and losses of genes in Cryptosporidium parvum IId subtype family compared with Cryptosporidium 
hominis and Cryptosporidium parvum IOWA reference isolate (subtype family IIa).

Chromosome Gene family C. parvum IOWA C. parvum in this study C. hominis TU502

3 SKSRa – cgd3_10 paralog b Chro.50011

5 MEDLE family of secreted proteins cgd5_4580 cgd5_4580 –

cgd5_4590 cgd5_4590 –

cgd5_4600 cgd5_4600 cgd5_4600

cgd5_4610 cgd5_4610 –

6 MEDLE family of secreted proteins cgd6_5480 – –

cgd6_5490 cgd6_5490 b –

6 Insulinase-like proteases cgd6_5510 cgd6_5510 –

cgd6_5520 cgd6_5520 –

– cgd3_4260 paralog b –

8 Cryptosporidium-specific paralogs cgd8_660 cgd8_660 cgd8_660

cgd8_680 cgd8_680 –

cgd8_690 cgd8_690 –

a
Chro.50011 is a paralog of Chro.50010, which encodes a secretory protein with SR motif repeats at the C terminus and is the second-to-last gene 

in chromosome 5 (the last gene is Chro.00007, which is a paralog of cgd8_10; C. parvum has orthologues of both Chro.50010 and Chro.00007). 
Both Chro.50010 and Chro.50011 are probably members of the SKSR gene family. The orthologues of Chro.50010 and Chro.00007 in C. parvum 
were not annotated in the IOWA genome.

b
The gene was also present in C. parvum IIa specimen 35090.
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Table 4

Number of single nucleotide variants in Cryptosporidium parvum genomes sequenced in this study compared 

with the Cryptosporidium parvum IOWA reference genome using Burrows Wheeler Alignment mapping.

Specimen ID. Total SNVs No. of genes with SNVs No. of SNVs in genes No. of non-synonymous SNVs

31727 5,386 1,505 (39.6%) 3,405 (63.2%) 1,821 (53.5%)

34902 5,766 1,525 (40.1%) 3,630 (63.0%) 1,971 (54.3%)

35090 5,191 1,459 (38.3%) 3,210 (61.8%) 1,702 (53.0%)
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